55уменьшаясь, обратится в нуль. Но чтобы это произошло, расстояние АВ должно предварительно уменьшит

55

уменьшаясь, обратится в нуль. Но чтобы это произошло, расстояние АВ должно предварительно уменьшиться до половины. В свою очередь, чтобы уменьшиться до половины, оно должно предварительно уменьшиться до половины этой половины, и т. д. до бесконечности. Итог тот же, что и в «Дихотомии»: дистанция АВ никогда не обратится в нуль.

Аргумент «Стадий» опровергает мыслимость движения, опровергая одну из принятых во время Зенона предпосылок движения — предположение, будто пространство состоит из неделимых частей (отрезков), а время — также из неделимых частей (моментов). Сделаем это допущение. Допустим также, что с противоположных сторон движутся по параллельным линиям равные по величине тела. Допустим, наконец, что тела эти проходят мимо третьего тела той же величины, но неподвижного (см. рисунок).

А1 А2 А3 А4 В4 В3 В2 В1 ---> <--- С1 С2 С3 С4  

А1 А2 А3 А4 В4 В3 В2 В1 С1 С2 С3 С4

Тогда получается, что одна и та же точка, движущаяся с равной скоростью, пройдет одно и то же расстояние не в одно и то же время, но пройдет его в одном случае в половину времени, а в другом — в удвоенное время. В одно и то же время крайние точки каждого из движущихся рядов В4 В3 В2 В1 и С1 С2 С3 С4 пройдут мимо всех остальных точек другого движущегося ряда. Однако в то же самое время они пройдут только мимо половины точек ряда, который остается неподвижным во время их движения. Такой различный результат будет зависеть от того, откуда станем мы рассматривать ее движение. Но в результате мы приходим к противоречию, так как половина оказывается равной целому. Другими словами, в аргументе «Стадий» немыслимость движения доказывается из рассмотрения времени, относительно которого предполагается, что оно, как и пространство, состоит из множества дискретных, но якобы соседствующих элементов.

 

56

Мы убедились, что во всех рассуждениях Зенона вопрос ставится вовсе не о том, можем ли мы воспринимать движение посредством чувств или не можем. В том, что движение воспринимается чувствами, ни Парменид, ни Зенон, не сомневаются. Вопрос состоит в том, возможно ли мыслить движение, если, мысля движение, мы допускаем при этом, что пространство, в котором движутся тела, состоит из множества отделенных одна от другой частей, и если допускаем, что время, в котором протекают все явления и происходит движение, состоит из множества отделенных друг от друга моментов. Неизбежность противоречий, к которым при этих предпосылках приходит мысль, доказывает, по Зенону, что утверждаемая противниками Парменида мыслимость множества невозможна.

Тот же смысл имеет и опровержение мыслимости пустого пространства. Суть аргумента Зенона вовсе не в доказательстве того, будто пространство не существует. Зенон доказывает другое. Он доказывает, что пространство не может мыслиться как пространство пустое, как пространство, существующее в какой бы то ни было своей части отдельно от вещества.

Аргументы Зенона сообщили мощный импульс дальнейшему развитию античной математики, античной логики и античной диалектики. Эти аргументы вскрыли противоречия в понятиях современной Пармениду и Зенону науки — в понятиях о пространстве, о едином и многом, о целом и частях, о движении и покое, о непрерывном и прерывном. Апории Зенона побуждали мысль искать разрешения замеченных им трудностей. Нависшая над математическим познанием угроза неразрешимых противоречий была устранена впоследствии атомистическим материализмом Левкиппа и Демокрита.

Мелисс

Третьим деятелем элейской школы был Мелисс. О нем известно, что он был уроженцем Самоса и успешно командовал самосским флотом во время войны Афин и Самоса в 440 г. до н. э. Деятельность его относится к середине 5 в. до н. э. Уроженец греческого Востока, Мелисс, по-видимому, учился у ионийских философов. Диоген сообщает даже, будто он слушал Гераклита. Поэтому нелегко ответить на вопрос, каким образом мог он прийти к элейскому учению, во всем противоположному учению Гераклита.